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We address – motivated in part by the findings of Gong et al. (1996) and Miller
(1995) – the role of streamwise-oriented large-scale structures in a developed flow
between a sinusoidal bottom wall and a flat top wall. Particle image velocimetry (PIV)
is used to examine the spatial variation of the velocity in different planes of the flow
through a water channel with an aspect ratio of 12 : 1. The wave amplitude is equal to
one tenth of the wall wavelength, Λ, and Reynolds numbers between 500 and 7300,
defined with the bulk velocity and the half-height of the channel, are considered. To
examine streamwise-oriented structures, the spanwise variation of the velocity field
is studied in a plane parallel to the top wall, and in one that intersects the wavy
surface at an uphill location. From a proper orthogonal decomposition (POD) of
the streamwise velocity fluctuations, we obtain the dominant eigenfunctions with a
characteristic spanwise scale of O(1.5Λ), which agrees with the scale of perturbations
for the streamwise velocity at laminar conditions. A decomposition of the turbulent
velocity field close to the uphill section of the wavy surface reveals smaller structures
at a location that coincides with the Reynolds shear stress maximum.

1. Introduction
The mean and turbulence quantities of a developed turbulent flow in a channel

with a sinusoidal bottom wall (wavelength Λ) and a flat top wall have been a
focus of numerous studies, based on both laboratory and numerical experiments. The
interest in this flow configuration is given by its technical relevance, and, even more
importantly, its applicability as a reference flow for complex flows.

The objective of this paper is to connect, for the separated flow over waves,
characteristic regions that were previously identified in a two-dimensional plane with
information on three-dimensional large-scale flow structures. To allow comparisons
with direct numerical simulations (DNS), we restrict ourselves to relatively low
Reynolds numbers. Figure 1 shows the coordinate system for the considered flow
configuration, where x is the direction of the mean flow (parallel to the top wall), y

is perpendicular to the top wall, and z is the spanwise coordinate. The corresponding
velocity components are denoted u, v and w. Channel flow (CF) and boundary layer
(BL) flow measurements are considered. The developed flow is characterized by the
ratio of the amplitude 2a to the wavelength

α =
2a

Λ
(1)
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Figure 1. Coordinate system and schematic of (I) the regions of separation of the mean
flow (Ψ = 0), (II) maximum, and (III) minimum Reynolds shear stress (Hudson et al. 1996;
Cherukat et al. 1998).

and the Reynolds numbers

Reh =
Ubh

ν
(CF), ReΛ =

U∞Λ

ν
(BL flow), (2)

where ν is the kinematic viscosity of the fluid, h is the half-height of the channel, and
U∞ denotes the free-stream velocity. The bulk velocity Ub is

Ub =

∫ 2h

yw

U (xξ , y) dy

∫ 2h

yw

dy

, (3)

where xξ denotes an arbitrary x-location and yw(x) = 0.05Λ cos(x2π/Λ) describes the
profile of the wavy surface. Tables 1 and 2 provide an overview of laboratory exper-
iments, computer simulations and theoretical work on the internal or BL flow over
waves, which have been conducted at different Reynolds numbers and for different α.

Mean flow

Early works described the non-separated flow over small-amplitude waves (α < 0.03)
by linear stability analysis. With increasing ratio α, linear analysis eventually be-
comes insufficient (Kuzan & Hanratty 1989). Following the original contributions
of Motzfeld (1937), Miles (1957), Benjamin (1959), and Hanratty (e.g. Buckles,
Hanratty & Adrian 1984), a number of laboratory and recent numerical experiments
were conducted to describe the flow field in terms of its mean and turbulence
quantities, and the mechanisms for turbulence production. For large enough α and
low enough Reynolds numbers, the flow separates (Kuzan & Hanratty 1989) and can
be characterized by the following features:

(i) periodicity of the mean flow in the streamwise direction, except for the pressure;
(ii) separation behind the wave crests;
(iii) Reynolds numbers in the range where detailed comparisons with direct

numerical simulations (DNS) are possible.
From a regime diagram that was introduced by Kuzan & Hanratty (1989), a time-
averaged flow separation can be expected for Reh < 30 000 for the present case
of α = 0.1. Characteristic regions of the separated flow are shown in figure 1. A
separation zone (I), sometimes referred to as a separation bubble, is located in the
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References Re/1000 α Facility Measurements

Stanton et al. (1932) 23.4, 70.6, 24.0Λ 0.400 WT, A Pw

Motzfeld (1937) 330Λ 0.050 WT, A Pw , U
330Λ 0.100

Zagustin et al. (1966) 147Λ 0.042 CF, W Pw , Ucrest

0.021

Kendall (1970) 19 − 64Λ 0.042 WT, A P , τw , Ui ,

√
u′2

i

Sigal (1971) 154, 306Λ 0.052 WT, A P , τw , Ui ,

√
u′2

i

Lees et al. (1972) 154, 306Λ 0.056

Hsu & Kennedy 57.5h 0.044 T, A U , V ,
√

u′2,
√

v′2,

(1971) 57.5h 0.022
√

w′2, −u′v′

Beebe (1972) 21.4 − 85.6Λ 0.170 WT, A P , τw , Ui ,

√
u′2

i

21.4 − 85.6Λ 0.400 WT, A
Thorsness (1975) 5.4 − 30h 0.013 CF, W τw

Zilker (1976) 7.0h 0.013 CF, W U , V ,
√

u′2,
√

v′2, −u′v′

7.0h 0.031 CF, W U , V ,
√

u′2,
√

v′2, −u′v′

6.0 − 32h τw ,
√

τ ′2
w

7.0h 0.050 CF, W U , V ,
√

u′2,
√

v′2, −u′v′

7.2 − 32h τw ,
√

τ ′2
w

7.0h 0.125 CF, W U , V ,
√

u′2,
√

v′2, −u′v′, FV

7.5 − 32h τw ,
√

τ ′2
w

7.0h 0.200 CF, W U , V ,
√

u′2,
√

v′2, −u′v′

24h Pw

Cary et al. (1980) 22 − 68Λ 0.010 WT, A Pw , direct drag, Ui

22 − 68Λ 0.020
22 − 68Λ 0.040

Chauve (1981) 32 − 115Λ 0.050 T, W U , V ,
√

u′2,
√

v′2,
√

w′2, −u′v′

Lin et al. (1983) 6.3 − 13.8Λ 0.010 WT, A Pw , direct drag
12.4 − 69Λ 0.020
12.4 − 69Λ 0.030
12.4 − 69Λ 0.040

Buckles (1983) 12h 0.200 CF, W U ,
√

u′2, S(u), F (u), Pw ,

√
p′2

w

12h 0.125 CF, W U ,
√

u′2, Pw ,

√
p′2

w

Abrams (1984) 6.0 − 12.3h 0.014 CF, W τw ,
√

τ ′2
w

Frederick& Hanratty 6.4h 0.031 CF, W U ,
√

u′2

(1988) 77.6Λ(38.8h) 0.050 U

Kuzan (1986) 48h 0.125 CF, W U ,
√

u′2, S(u), F (u), Pw

33h 0.125 U ,
√

u′2, S(u), F (u), Pw , FV

4.1h 0.200 U ,
√

u′2, S(u), F (u), Pw , FV

Hudson et al. (1996) > 3.4h 0.100 CF, W U , V ,
√

u′2,
√

v′2, −u′v′, Pk , FV

Gong et al. (1996), 3.8Λ 0.158 WT, A U , V ,
√

u′2,
√

v′2,
√

w′2,
Miller (1995) −u′w′, Pw , τw

Secondary flow observed
Russ & Beer (1997) 0.3 − 13d 0.106 T, A FV and heat transfer

measurements
Nakagawa et al. (2001) 46h 0.10 (0.1) CF, W Turb. quantities, connection to

fully rough surface

Table 1. Summary of experimental studies. A= Air, CF= Channel flow, T= Tube flow,
W= Water, WT= Wind tunnel flow, FV= Flow visualization.
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References Description of Investigation

Benjamin (1958) ST. Linear disturbance theory.
Bordner (1978) Nonlinear analysis of laminar flow over wavy boundary.
Markatos (1978) RANS. Heat and mass transfer across a wavy boundary

two equation closure.
Balasubramanian et al. (1982) RANS. Zero and two-equation closures.
Caponi et al. (1982) Simulation of turbulent flow over moving wavy boundary.
Patel et al. (1991) Reh = 6400, α = 0.3125 (sep. flow), (ref. measurements by

Frederick (1986)), and Reh = 4080, α = 0.2. non-separated
flow (ref. measurements by Kuzan (1986)) RANS,
two-layer k, ε-closure.

Krettenauer & Schumann DNS and LES simulation of turbulent flow over wavy
(1991) boundary, transport of passive scalar.

Hino& Okumura (1993) Reh = 3400, α = 0.0184, DNS, quasi-stationary streaky
pattern at wavy surface observed.

Wang et al. (1997) Modeling turbulent boundary layer flow over wavy surface
(terrain).

Maass& Schumann (1996) Reh = 3380, α = 0.1, Λ/H = 1, B/Λ = 2, DNS.
Phillips & Wu (1994), ST. Existence of longitudinal vortices in turbulent flow over

Phillips et al. (1996) wavy boundary.
De Angelis et al. (1997) α = 0.1, Λ/H = 1.04, B/Λ = 1, DNS.
Cherukat et al. (1998) Reh = 3460, α = 0.1, Λ/H = 1, B/Λ = 2, DNS.
Henn & Sykes (1999) Reh = 6560 − 20060, α = 0.031 − 0.2, Λ/H = 1, B/Λ = 1,

LES
Boersma (2000) Reh = 1750, α = 0.1, Λ/H = 1, B/Λ = 3

DNS of particle-laden flow over waves.
Indications for streamwise-oriented structures found.

Table 2. Summary of selected theoretical investigations and computer simulations.
RANS = Reynolds averaged Navier–Stokes equations, ST= Stability analysis.

wave troughs bounded by the isosurface for vanishing mean streamfunction that is
obtained by integrating the mean streamwise velocity in the y-direction:

Ψ (x, y) =

∫ y

yw

U (x, ỹ) dỹ

Ub2h
. (4)

In the vicinity of the separated region, scalings that are commonly applied to free
shear layers were used to describe the flow (Hudson, Dykhno & Hanratty, 1995). At
the uphill side of the wave, two regions of maximum positive (II) and negative (III)
Reynolds shear stress, −�u′v′, are found. From the DNS results of Cherukat, Hanratty
& McLaughlin (1998) for Reh = 3460, the locations of regions (II) and (III) are ap-
proximately 0.08Λ and 0.01Λ above the wall at the uphill side. Furthermore, the data
of Cherukat et al. (1998) and Henn & Sykes (1999) identify the energy of transverse
velocity fluctuations, �w′2, to be maximal at a location that is close to region (III).

Flow structure

Longitudinal structures play a dominant role in a number of transport processes,
e.g. streaky structures for turbulence generation in the vicinity of a solid wall
(Robinson 1991), or Langmuir circulations at gas–liquid interfaces (Craik 1977).
Even though such structures are of three-dimensional nature, the mostly qualitative
visualizations were restricted to observations in the (x, y)-plane. Only recently, was
attention drawn to the effect of the wavy wall on the formation of three-dimensional
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large-scale structures. The literature on the stability of a sheared flow over rigid waves
suggests different mechanisms to produce, or catalyse, spanwise-periodic longitudinal
vortices: the Görtler (Görtler 1940; Saric 1994) and the Craik–Leibovich type-2
(CL2) instability (Phillips & Wu 1994). The work of Phillips & Wu (1994) on the
development of longitudinal vortex modes in inviscid linear shear and of Phillips,
Wu & Lumley (1996) on the inviscid and viscous instability of power-law and
logarithmic velocity profiles to spanwise-periodic longitudinal vortex modes, explain
the presence of longitudinal large-scale structures with a CL2 instability. Gong,
Taylor & Dörnbrack (1996) and Miller (1995) were the first to show the presence of
such structures from single-point measurements in a turbulent BL flow over waves,
and to connect them to a CL2 instability. However, the small aspect ratios of the
facilities used of approximately 4:1 for both experiments are likely to have affected the
lateral motion of the large-scale structures. Most numerical studies were performed
for relatively small spanwise domain sizes. For a DNS with a spanwise domain of
3Λ, Boersma (2000) recently obtained indications of such large-scale structures in
instantaneous fields of the streamwise velocity in the (y, z)-plane. There is a lack
of detailed laboratory or computer experiments on the BL or internal flow over
two-dimensional waves with larger spanwise domains to clarify the role and lateral
motion of such flow structures. Before characterizing the experimental details of the
present work in § 2, we briefly summarize the motivations for previous studies.

Reference flow with separation

The waviness of the bottom wall adds a degree of complexity to the flat-walled
channel flow, but the flow conditions remain as they are for the flat-walled channel,
well-defined by the no-slip conditions at the channel walls and periodicity (except for
the pressure) at the inflow and outflow sections. This is a significant advantage over
other test cases for separated flows, namely the flow over a backward or forward
facing step (Stüer 1999), where the proper definition of the inflow conditions remains
a challenge for laboratory and numerical experiments. Separation occurs behind the
wave crests, thus multiple time scales persist. At moderate Reynolds numbers, detailed
comparisons with DNS are therefore possible.

Hydrodynamically rough wall

Turbulence production at smooth walls has been widley studied by numerical and
experimental means. The formation of streamwise vortices in the wall region has been
identified as a key issue in understanding how turbulence is sustained. Altering those
structures is seen as an effective tool for changing mean and turbulence properties
of the flow, most notably the drag. Turbulence production and sustainment in the
near-wall region, and thus the turbulence structure, are likely to be different from a
smooth surface. However, a similarity of the structures in the outer flow has been
hypothesized by Raupach, Antonia & Rajagopalan (1991). By using wavelengths
that are ten times smaller than the channel height and Nakagawa & Hanratty (2001)
systematically address this problem for α = 0.1 and connect it to a fully rough surface.

Flow over topology and wavy gas–liquid flows

Many technically, geophysically or environmentally relevant flows occur over rough
or structured surfaces. To improve existing models of such flows, DNS and large-
eddy simulations (LES) of the flow over sinusoidal waves have been conducted, e.g.
Dörnbrack, Gerz & Schumann (1993), and Krettenauer & Schumann (1992). Boersma
(2000) studied particle-laden flow over waves by means of DNS. The developed flow
over solid waves can be related to non-breaking wavy gas–liquid flows. Since the
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Figure 2. Facility with the channel sections and the recirculation system: (1) turning elbows,
(2) honeycomb, (3) flat-walled entrance section, (5) section with wavy bottom wall, (4, 6–8)
optical view ports, (9) reservoir, (10) frequency-controlled pump, (11) pipe and (12) diffusor.

ratio between the gas and the liquid density is of O(0.001), De Angelis, Lombardi
& Banerjee (1997) argue that the gas–liquid flow can be approximated by a fluid
flow over a solid wave. Note that the two-dimensional sinusoidal waves considered
herein are a simplification of real three-dimensional surface waves. Note also that we
consider a standing wavy surface, whereas a moving solid wave would be a closer
approximation of a wavy gas–liquid flow.

2. Experiments
Measurements are carried out in a channel facility, see figure 2, with approximately

0.280 m3 of de-ionized and filtered water as the working fluid. The flow loop is designed
for low Reynolds number turbulence measurements with light sheet techniques. The
entire facility is made of black anodized aluminium, PVC, and Schott BK-7 glass. All
parts are positioned in a welded stainless-steel frame.

Recirculation system

After passing the channel (5 in figure 2), the water flows into a reservoir, (9). A
frequency-controlled stainless-steel pump, (10), draws fluid from an intake that is
installed at the bottom of the reservoir tank and feeds it through a PVC tube with
an inner diameter of 50 mm (10). To reduce transmission of vibrations, the pump has
flexible connections at the inflow and the outflow sides. At the outflow side, a 2.25 m
long diffusor (12) with a maximum opening angle of 1.9◦, (12), is located. Gradual
expansion of the inflow tube from the circular cross-section to a rectangular one of
360 mm × 200 mm is done to avoid boundary layer separation, which may affect the
flow characteristics in the test section (Niederschulte 1988). The direction of the flow
is changed with turning vanes, (1) in figure 2. The diffusor and the section with the
turning elbows are made of black anodized aluminium and interconnected through
flanges. The flow then passes a honeycomb, (2), with a hexagonal cell structure of
carbon-fibre reinforced plastics. A honeycomb length-to-cell-size ratio of seven is
used. At the entrance to the rectangular channel, the cross-sectional area is reduced
by a factor of 6.7 and a boundary layer trip, which extends 1 mm into the flow
from all four walls, is positioned. It ensures fully developed turbulent channel flow
by uniformly disturbing the boundary layer of the flow.

Channel

With positioning screws, the two channel sections are aligned horizontally and
connected to the stainless-steel frame. The full height of the channel, H , is 30 mm, and
its aspect ratio, B/H , is 12 : 1. The inflow section of the channel, (3), is 67 channel
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Figure 3. Side view of the flow field with the separated region (streamline Ψ = 0) and the
measurement locations in the (x, z)-plane, and in the (y1, z)-plane with β = 53◦.

heights long and consists of flat top and bottom walls. Both walls are made of black
anodized aluminium with a wall thickness of 6 mm. A second section with a flat top
and a wavy PVC bottom wall, (5), has a length of 72 channel heights and offers the
possibility of heating the sinusoidal bottom wall resisitively over a section 34 channel
heights long. However, all present results are obtained for isothermal flow. Studies on
flow over heated waves are reported elsewhere (Günther & Rudolf von Rohr 2002).
Positioning screws and liquid sealings at flange connections ensure precise horizontal
alignment of both sections. The wavelength Λ of the removable sinusoidal wall profile
is equal to the full height of the channel, H = 2h, and α is 0.1. A cutting tool with
the sinusoidal profile was machined and gauge measurements confirm that the milled
PVC wall deviates less than 0.24% from the ideal sinusoidal shape.

Test section

Optical access is provided at four streamwise locations of the wavy channel section
through viewing ports (positions 4, 6, 7, 8 in figure 2) at both sidewalls (thickness
5 mm) and at the flat top wall (thickness 7 mm), all flush mounted to the channel inner
walls and made of optical grade Schott BK-7 glass. Measurements are performed at
the positions (4, developing flow) and (7, developed flow) after the 4th and the 50th
wave crest. Side windows provide optical access with a maximum area of view (AOV)
of 3Λ(streamwise)×1.2Λ(normal), where the maxiumum AOV for the top windows
is 3.3Λ(streamwise)×3.3Λ(spanwise). Figure 3 illustrates the measurement planes in
the test section. The Reynolds number is adjusted through the pump frequency and
determined by monitoring the flow rate and temperature of the water. In its present
configuration, the facility allows measurements between laminar flow conditions and
a maximum Reynolds number of approximately 8000.

We use digital particle image velocimetry (PIV) (Westerweel 1993; Adrian 1991)
to experimentally assess the role of large-scale structures in the velocity field. The
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flow is seeded with monodisperse 30 micron spherical Latex particles (Pharmacia
Biotech product Source 30 ETH). The measurement system consisting of the laser,
the laser optics, and the camera, is positioned on a traverse that allows the vertical
position to be altered. The measurement accuracy of adjusting the y-position with
the traverse is approximately 10 microns. A flashlamp-pumped dual Nd : YAG laser
(λ = 532 nm, New Wave, Inc., Minilase III) provides the pulse light source and
two CCD cameras, a 8 bit Kodak Megaplus ES 1.0 with a spatial resolution of
1008 (horizontal) × 1016 (vertical) pixels2, and a 12 bit PCO SensiCam with a spatial
resolution of 1280 (horizontal)×1024 (vertical) pixels2 are used for image acquisition.
Both are components of a commercial PIV system of TSI. In § 3, we compare the
streamwise mean velocity that is obtained from PIV measurements in the (x, y)-plane
with literature data and obtain information on how far the longitudinal structures
extend in the normal direction away from the surface. In § 4, longitudinal structures
are identified based on their instantaneous streamwise velocity in the (x, z)-plane at
the vertical distances y/Λ = 0.26 and 0.74. Since the spanwise extent of the flow
domain is large, they are expected to meander laterally. In § 5, a measurement plane
that intersects with the wavy surface at the uphill side of the flow, is considered.

3. The smallest resolvable (x, y)-plane
In order to connect to previous work, flow conditions close to those of a laser

Doppler velocimetry study by Hudson (1996), and a DNS by Cherukat et al. (1998)
are chosen. Measurements in the (x, y)-plane are performed at a Reynolds number of
3350, with two AOV, 0.99Λ×0.79Λ and 1.1Λ×1.1Λ. The first allows a more detailed
assessment of the separated region in the wave troughs, whereas the latter includes
the entire flow field between the wavy bottom and the flat top wall and therefore
allows the bulk velocity to be obtained equation (3) and the Reynolds number of the
flow. It should however be noted that the large AOV limits the spatial resolution in
characteristic regions of the flow, namely in the vicinity of the walls. For the AOV,
the smallest resolvable spot was 0.03Λ × 0.03Λ.

3.1. Instantaneous and mean flow

For a Reynolds number of 3350, figure 4 provides qualitative information on the
structure of the flow in the (x, y)-plane from six instantaneous realizations for
the dimensionless velocity fluctuations (outer scales) in the streamwise and normal
directions of the mean flow. The Kodak camera is used with the larger AOV. Even
though judgement based on instantaneous information is subjective, since nothing is
known about the significance of one particular instant in time with regard to the entire
flow field, it provides useful information on the scales and complexity of the flow.
Consistent with previous findings, large ejections of fluid are observed in the wave
trough, which can reach far into the outer flow, almost to the top wall (Hudson 1993).
Figure 5 (a–c) shows contour plots of the mean streamwise velocity, U/Ub, the mean
normal velocity, V (x, y)/Ub, and the mean stream function, Ψ (x, y). The averages
are obtained from 250 instantaneous velocity fields that were acquired in the frame-
straddle mode at a rate of 1 Hz. The PCO Sensicam camera is used with the smaller
AOV. Outer scaling is applied for the velocities, i.e. they are made dimensionless
with the bulk velocity, Ub = 0.22 m s−1. In figure 6, the streamwise mean velocities
that are obtained from PIV measurements in the (x, y)-plane are compared with the
laser Doppler velocimetry (LDV) data of Hudson et al. (1996). Since Hudson et al.’s
data were restricted to the lower channel half, the common definition for the bulk
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Figure 4. Instantaneous velocity fluctuations in the streamwise, u′/Ub (left), and the normal
direction, v′/Ub (right), in the (x, y)-plane at Reh = 3350. AOV= 1.1Λ × 1.1Λ.

velocity, (3), is not applicable. In order to compare the data, our velocities are made
dimensionless with the streamwise mean velocity that is obtained from integrating
U (x, y) over the lower channel half:

Ub,Hudson =
1

hΛ

∫ Λ

0

∫ h

yw

U (xξ , y) dy dx. (5)

In figure 6, the profiles of the streamwise mean velocity are compared at the two
locations, x/Λ = 0.0 (crest) and x/Λ = 0.5 (trough). Considering the limited resolution
of the PIV measurements of 0.04Λ, a good agreement is obtained. Figure 5(c) shows
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Figure 5. Contours of (a) the dimensionless mean streamwise velocity, U/Ub, (b) the mean
spanwise velocity, V/Ub, and (c) the mean stream function in the (x, y)-plane in outer scales
for the flow over waves at Reh = 3350. Solid lines represent positive and broken lines negative
velocities.

the mean stream function at the Reynolds number of 3350. Streamline Ψ = 0 bounds
the separated region.

Contours of the turbulence intensities in the streamwise and normal directions
and the Reynolds shear stress are shown in figure 7. Consistent with the conceptual
sketch in figure 1, three distinct regions are found. First, a surface of vanishing Ψ

bounds the separated region. The two intersections of that surface with the wavy wall
represent the separation and reattachment lines, which are oriented perpendicular
to the (x, y)-plane. Note that, in comparison with the instantaneous flow fields in
figure 4, the locations of separation and reattachment are not spatially fixed but they
change transiently. Secondly, the streamwise turbulence intensity has a maximum at
a location above the wave crest that coincides with a maximum of the Reynolds
shear stress, region (II). It is consistent with the experimental results of Hudson et al.
(1996), and with the numerical prediction of Cherukat et al. (1998). Third, a region
(III) of minimum Reynolds shear stress is located in the vicinity of the wavy wall on
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LDV data of Hudson et al. (1996).

its uphill side. This region has previously been connected to structural information
in recent DNS and LES studies (e.g. Henn & Sykes 1999). Note that the limited
dynamic and spatial resolution of the PIV measurements limits the accessibility of
region (III), see figure 1.

3.2. POD analysis

From the PIV measurements in the (x, y)-plane, the streamwise and the normal
velocity components, u(x, y, t) and v(x, y, t), are obtained at discrete times ti , with
i = 1, . . . , M , at 1, . . . , m discrete x-locations, and 1, . . . , n discrete locations in
the y-direction. To characterize large-scale flow structures at turbulent conditions,
we perform a proper orthogonal decomposition (POD) or Karhunen–Loève (KL)
decomposition of the stream-wise velocity component (Liu, Adrian & Hanratty 2001;
Berkooz, Holmes & Lumley 1993). We use the method of snapshots (Sirovich 1987).
A single coordinate ξ = 1, . . . , N with N = nm distinguishes between the different
positions in the (x, y)-plane. We write the set of spatio-temporal velocity data as

U = {Ui}M
i=1 =

1

Ub




u11, u11, . . . , u1M

u21, u22, . . . , u2M

...
uN1, uN2, . . . , uNM


, (6)

with Ui = 1/Ub[u1, u2, . . . , uN ]T . Note that the N ×M-matrix U is already normalized
with Ub. We obtain the mean velocity by averaging over the columns:

U =
1

M

M∑
i=1

Ui , i = 1, . . . , M. (7)

For the velocity fluctuations then

U ′
i = Ui − U, i = 1, . . . , M. (8)
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Figure 7. Contours of (a) the turbulence intensity in the streamwise direction,
√

u′2/Ub , (b) in

the normal direction (bottom),
√

v′2/Ub, and (c) the Reynolds shear stress −u′v′/U 2
b in the

(x, y)-plane for flow over waves at Reh = 3350.

Using the method of snapshots, the M × M covariance matrix becomes

Cij = 〈U ′
iU

′
j 〉, i, j = 1, . . . , M, (9)

where 〈·, ·〉 is the Euclidean inner product. Since the matrix is symmetric its eigen-
values, λi , are non-negative, and its eigenvectors, φi , i = 1, . . . , M , form a complete
orthogonal set. The orthogonal eigenfunctions are:

Π [k] =

M∑
i=1

φ
[k]
i U ′

i , k = 1, . . . , M, (10)

where φ
[k]
i is the ith component of the kth eigenvector. Note that index i distinguishes

between velocity fields that are taken at different instances in time, not between
different velocity components. For the contribution of the streamwise fluctuations to
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the turbulence energy we can write

E =

(
u′

Ub

)2

=

M∑
i=1

λi (11)

and the fractional contribution of one eigenfunction’s associated eigenvalue is

Ek

E
=

λk

E
. (12)

Note that both the x- and the y-directions are inhomogeneous. Somewhat similar
to the approach chosen by Liu et al. (2001), we do not attempt to filter characteristic
eddies. Figure 8 shows contours of the eigenfunctions Π1,u, . . . , Π4,u that correspond
to the four dominant modes, 1, . . . , 4, being ranked in decreasing order of their
fractional contribution to the turbulent kinetic energy in the streamwise direction,
E. In figure 9(a) the fractional contributions Ek/E and the cumulative values for
λ1, . . . , λ30 are shown for a sample size of 250 and Reh = 3350, where λ1/E already
contributes 33% of the kinetic energy of the streamwise velocity fluctuations. In
figure 9(b), the eigenfunction, CΠ1,u(x/Λ = 1.0, y), is plotted above the crest location
x/Λ = 1.0. The curve is normalized so that its maximum is equal to unity. The data
suggest that the dominance of mode 1 is limited to the lower channel half. Since the
curve has a pronounced maximum location at y/Λ ≈ 0.26, we will select this plane
for our measurements in the (x, z)-plane. Phillips et al. (1996) conducted a stability



270 A. Günther and Ph. Rudolf von Rohr

y /K

1.0

0.8

0.6

0.4

0.2

0 5 10 15 20 25 30

POD mode n

Fr
ac

ti
on

al
, c

um
ul

at
iv

e 
en

er
gy

(a)

1.0

0.8

0.6

0.4

0.2

0

P
 (

a.
u.

)

(b)

–0.2
0 0.2 0.4 0.6 0.8 1.00.26

x /K=1.0 (crest)
l = 0.1 Phillips et al. (1996)
l =1.0 Phillips et al. (1996)
l =5.0 Phillips et al. (1996)

Figure 9. (a) Fractional energy Ek/E (solid line) of the thirty dominant POD modes and the
cumulative energy (broken line) from a decomposition of u′/Ub for the developed flow in the
(x, y)-plane at the Reynolds number, Reh = 3350. (b) The spanwise variation of the dominant
eigenfunction above a crest location, Π1 (x/Λ = 1.0), is compared with the prediction of Phillips
et al. (1996). Phillips et al. approximate a boundary layer flow by a power-law or logarithmic
velocity profile (l = 0.1, 1, 5 and 2πδ/Λ = 1). Position y/Λ = 0.26 is where measurements are
obtained in the (x, y)-plane.

analysis for a boundary layer flow over waves. They approximated the flow field by
a power-law and a logarithmic profile and obtained eigenfunctions of the streamwise
velocity in the normal flow direction that are included in the figure. The shape of the
eigenfunctions was found to be insensitive to the two approximate velocity profiles
the authors considered. The stability analysis was conducted for 2πδ/Λ = 1, where δ is
the boundary layer thickness. For the experiments conducted by Gong et al. (1996) this
parameter is approximately 6 (Phillips et al. 1996). If we assume δ ≈ H/2, we obtain
2πδ/Λ ≈ π for the present case. A second parameter, l = 2πδ/Λz, was introduced.
Figure 9(b) shows the eigenfunctions for l = 0.1, 1 and 5 obtained by Phillips et al.
(1996). Symbol Λz denotes a characteristic spanwise separation of the longitudinal
structures. By assuming δ ≈ H/2, we obtain l ≈ πH/Λz. The maximum location of
Π1,u(x/Λ = 1.0, y) lies between the numerical results of Phillips et al. (1996) for l = 1
and 5, i.e. in good agreement. Compared to the result from the stability analysis for
a boundary layer flow, the experimentally obtained curve Π1,u(x/Λ = 1.0, y) for our
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channel flow extends further away from the wavy wall. By examining the (x, z)- and
the (y1, z)-planes, we collect quantitative information on Λz and connect longitudinal
flow structures to the characteristic region (II).

4. The (x, z)-plane
4.1. Instantaneous and mean flow

The instantaneous velocities in the (x, z)-plane are obtained at the wall-normal
distance y/Λ = 0.26, see figure 3. In this plane above the wave crests, the perturbations
in the velocity field were found to be the largest and the dominant eigenfunction in the
(x, y)-plane showed an extremum. Due to the waviness of the bottom wall, the mean
flow is weakly inhomogeneous in the x-direction in this plane, whereas the spanwise
direction, z, can be considered homogeneous at the measurement location in the
channel centre. Measurements in the (x, z)-plane are expected to reveal information
that is related to the spanwise extent of large-scale, longitudinal flow structures. In § 5,
these structures are connected to smaller scales that can only be observed at locations
closer to the wavy wall surface.

To quantitatively address the role of large scales in the (x, z)-plane, we first consider
the flow at Reh = 700. Figure 10 shows a sequence of nine contour plots of the
instantaneous streamwise velocity obtained from transient PIV measurements with a
time separation of 1 s and a large AOV of 2.23Λ × 1.79Λ with the PCO camera.
The streamwise positions x/Λ = 0.0, 1.0 denote wave crests, and x/Λ = 0.5, 1.5 are
troughs. Initially, the flow is laminar and large variations of the streamwise velocity are
found in the spanwise direction. For qualitative information, the flow was first seeded
with reflective flakes. Such tracers are extremely non-spherical (Günther 2001) and,
when illuminated in a light sheet, reflect light depending on their orientation in the
flow. Large fluid columns, which are separated by a distance O(1.5Λ) in the spanwise
direction can be observed passing the view port at the top wall. In figure 10(a–d), the
spanwise position of the fluid columns is fixed. In figure 10(d–f), a traverse motion
of these columns can be observed. Eventually, transition to turbulence occurs in
figure 10(g–i). In a further step we examine whether similar structures are present
at turbulent flow conditions. The Reynolds number considered is 7300. Figure 11
shows a sequence of nine contours for the instantaneous streamwise velocity that is
acquired with the same AOV and the maximum frame rate of the PCO camera in
the frame straddle mode, 3.75 Hz. Subsequent realizations are therefore separated by
0.27 s. The existence of large-scale longitudinal structures is already obvious from the
instantaneous plots. However, the quantitative contributions of the different scales,
and the dominant scale cannot be found by such means. One observation however
is that the observed longitudinal structures do not have fixed spanwise locations but
meander laterally. Figure 12 shows the spanwise variation of the wave-averaged mean
streamwise velocity for Reh = 3800 (dotted line) and 7300 (dashed line). The averages
are obtained from sequences of 250 vector fields that were acquired with a frame
rate of 1 Hz. The curves are made dimensionless with their averages in the spanwise
direction

〈U〉xz =
1


zΛ

∫ Λ

0

∫ z2

z1

U (z) dz dx. (13)

For the two turbulent flow cases, the spanwise variation of the mean streamwise
velocity is smaller than ±2%. In this context we relate the large spanwise variation of
the mean streamwise velocity of up to ±7% that was reported from the wind-tunnel
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Figure 10. Sequence of contours for the instantaneous streamwise velocity, u′/Ub , in the
(x, z)-plane at y/Λ = 0.26 during transition to turbulence at Reh = 700. Streamwise locations
x/Λ = 0, 1.0 denote wave crests, and x/Λ = 0.5, 1.5 are troughs. The individual velocity fields
(a–i) are separated by a temporal difference of 1.0 s. AOV=2.23Λ × 1.79Λ.

measurements of Gong et al. (1996) to the relatively low aspect ratio of their facility.
The graph that corresponds to figure 10(a) is plotted as a solid line, where spanwise
variations of up to ±20% are found.

4.2. POD analysis

Since mean quantities do not reveal structural information in the homogeneous z-
direction, we conduct a POD analysis from PIV velocity fields in the (x, z)-plane.
The streamwise velocity component, u(x, z, t), is given at discrete times ti , with
i = 1, . . . , M , at 1, . . . , m discrete x-locations, and 1, . . . , n discrete z-locations. We
use the method of snapshots to conduct a POD analysis in the (x, z)-plane as described
in the previous section for the (x, y)-plane.

Since the spanwise flow direction is homogeneous, the POD analysis is identical
to a Fourier decomposition in this direction. However, this is not true in the weakly
inhomogeneous x-direction, where POD analysis is the correct way of decomposing
the velocity field. Figure 13 shows the eigenfunctions Π1,u, . . . , Π6,u that correspond to
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Figure 11. Sequence of contours for the instantaneous streamwise velocity, u′/Ub, in the
(x, z)-plane at y/Λ = 0.26. The streamwise locations x/Λ = 0, 1.0 denote wave crests, and
x/Λ = 0.5, 1.5 are troughs. The individual velocity fields (a–i) are separated by a temporal
difference of 0.27 s. AOV= 2.23Λ × 1.79Λ, Reh = 7300.

the six dominant modes, 1, . . . , 6, being ranked in decreasing order of their fractional
contribution to the turbulent kinetic energy in the streamwise direction, E. Figure 14
shows contours of the fractional contributions Ek/E and the cumulative values for
λ1, . . . , λ30. Solid circles correspond to Reh = 7300 and open circles to Reh = 3800.
The results suggest that, for the Reynolds numbers considered, eigenfunctions Π1,u

and Π2,u have a characteristic scale Λz = O(1.5Λ) in the spanwise direction. This
value is identical to the scale that we previously obtained for the spanwise variation
of the mean streamwise velocity at laminar conditions. The cumulative contribution
of (E1 + E2)/E at Reh = 7300 is 31% for the lower and 47% for the higher
Reynolds number and therefore increases with increasing Reynolds number. POD
modes 1, . . . , 6 have cumulative contributions of 55% and 72% respectively. The
open triangles in figure 14 show the corresponding curves that are obtained in an
(x, z)-plane that is separated from the top wall by the same distance as the two other
measurement locations are from the bottom wall, ∆y/Λ = 0.26. The Reynolds number
is 3800. Comparing the two curves for Reh = 3800 suggests that – in agreement with
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Figure 12. Spanwise variation of the streamwise-averaged streamwise mean velocity
(normalized) for the turbulent Reynolds numbers Reh = 3800 (dotted line), 7300 (broken
line), and for Reh = 700 (solid line with circles) before the transition to turbulence.

the previously presented findings for the (x, y)-plane – the dominance of modes 1
and 2 is limited to the lower channel half.

In the upper half of figure 15, the spanwise variation of the streamwise-averaged
eigenfunctions 〈Π1,u(z)〉x and 〈Π2,u(z)〉x at Reh = 7300 (figure 13) are compared. To
allow a comparison, the curves are shifted in the homogeneous spanwise direction so
that their maxima coincide at z/Λ = 0. In the lower half of figure 15, the streamwise-
averaged streamwise mean velocity at Reh = 700 before the transition to turbulence
occurs is plotted. The mean streamwise velocities obtained by Gong et al. (1996)
y/Λ = 0.16 above the 12th crest and by Miller (1995) above the crest of the 9th wave
in BL flows are included in the plot. Again, the transverse positions of both curves
are adjusted. In the studies of Gong et al. (1996) and Miller (1995), wind tunnels with
the relatively low aspect ratio of 4 : 1 were used. The comparison between the curves
that were obtained at different flow configurations confirm the scale Λz = O(1.5Λ).
In that context we note that for the measurements of Gong et al. (1996), the spanwise
variation of the mean flow was not symmetric about the channel centre, suggesting
that Λz is not a multiple of Λ. We can summarize that the dominant eigenfunctions
suggest a characteristic scale, here O(1.5Λ). Their influence is restricted to the lower
half of the channel and increases with increasing Reynolds number.

5. The (y1, z)-plane
In this section we connect the structural information that we obtained in the (x, z)-

plane at y/Λ = 0.26 to structures in the vicinity of the uphill side of the wavy surface.
Since the possibilities for laser-sheet measurements in the (y, z)-plane are limited in a
water channel facility, we instead consider a plane that is tilted by an angle of β = 53◦

to the x-axis, and refer to it as the (y1, z)-plane, see figure 3. This plane intersects
with the wavy wall at an uphill location, where we expect structural information that
is connected to the local curvature of the wall – i.e. the Görtler mechanism (Saric
1994) – and to the Reynolds shear stress maximum, region (II) in figure 1. To obtain
distortion-free imaging through the optical view port at the top wall of the channel,
we position a second window parallel to the light sheet plane and fill the volume
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Figure 13. Eigenfunctions Π1,u, . . . , Π6,u in the (x, z)-plane at y/Λ = 0.26 from a POD
analysis of the streamwise velocity component, u′/Ub. AOV= 2.23Λ × 1.79Λ, Reh = 7300.

between the two glass windows with water, see figure 16. Such a configuration is
sometimes referred to as a water prism.

5.1. Instantaneous and mean flow

PIV measurements in the (y1, z)-plane are challenging since the mean flow passes
through the measurement plane, and velocities in the spanwise direction are expected
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cumulative value (broken lines) from a decomposition of u′/Ub for the developed flow in the
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Figure 15. Comparison between the spanwise variation of the streamwise-averaged eigen-
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streamwise mean velocity (normalized) for Reh = 700 before the transition to turbulence.
The variation of the mean streamwise velocity Gong et al. (1996) (above the 12th crest) and
Miller (1995) reported from boundary layer flow measurements are included. Both profiles
were obtained for B/Λ

.
= 4 : 1 at positions y/Λ = 0.16.

to be small compared with the mean streamwise velocity. Measurements are performed
with the Kodak Megaplus camera. In order to provide an acceptable spatial resolution
in the near-wall region, a smaller AOV of 0.67Λ × 0.67Λ is used. We first examine
the flow at laminar conditions. For a Reynolds number of 600, corresponding
to a bulk velocity of 0.033 m s−1, figure 17 shows the velocity variation in the
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Figure 16. Optical configuration for measurements in the (y1, z)-plane. (a) Schematic of the
optical path; (b) photograph of the set-up with the water prism.
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Figure 17. Contours of the mean velocities (V1 − 〈V1〉)/Ub (a) and W/Ub (b) for the laminar
flow at Reh = 600 in the (y1, z)-plane. AOV= 0.67Λ × 0.67Λ.

y1-direction, (V1 − 〈V1〉z)/Ub, and in the spanwise direction, W/Ub, where 〈V1〉z

denotes an average in the spanwise direction (constant y1). Line y1 = 0 describes
the intersection between the measurement plane and the uphill side of the wall
(x = 0.818Λ, y = 0.021Λ) and y1 = 0.67Λ corresponds to a location close to the
channel centre, (x = 0.415Λ, y = 0.556Λ). The (x, z)-plane with y/Λ = 0.26 that was
studied in the previous section intersects the (y1, z)-plane at y1 = 0.30Λ. At turbulent
flow conditions, figure 18 shows instantaneous vector fields of the velocities (a) and
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Figure 18. Instantaneous velocities (a) and velocity fluctuations (b) in the (y1, z)-plane. The
horizontal broken line marks region (II), where the Reynolds shear stress has a maximum.
AOV= 0.67Λ × 0.67Λ, Reh = 3800.

the corresponding velocity fluctuations (b) that are obtained in the (y1, z)-plane at
three instances in time. The Reynolds number is 3800, and velocities are made
dimensionless with the corresponding bulk velocity, Ub = 0.26 m s−1. The broken
horizontal line marks region (II) in figure 1, where the Reynolds shear stress has a
local maximum. The vortical structures that are found in the instantaneous velocities
are located close to region (II).
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Figure 19. Contours of the eigenfunctions Π1,v′
1
, . . . , Π7,v′

1
from the dominant modes λ1, . . . , λ7

for a decomposition of v′
1/Ub from 189 velocity fields of the developed flow (after the 50th

crest) in the (y1, z)-plane. Continuous lines represent positive, broken lines negative values, and
the horizontal broken line marks region (II), where the Reynolds shear stress has a maximum.
AOV= 0.67Λ × 0.67Λ, Reh = 3800.
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Figure 20. Fractional energy Ek/E (dotted lines) of the dominant modes λ1, . . . , λ30, and
cumulative value (solid lines) from a decomposition of the velocity component v1/Ub for the
developed flow in the (y1, z)-plane at the two Reynolds numbers, Reh = 3800 (�), and 7300
( �), and for the non-developed flow at Reh = 3800 (	).

5.2. POD analysis

To address the contribution of different scales to the energy of velocity fluctuations
in the y1-direction, we perform – as we did in the previous two sections – a POD
analysis. Similar to (6), we now consider a set

V1 = {V1}M

i=1. (14)

A POD analysis is performed for a set of 189 velocity fluctuations

V ′
1i = V1i − V1, i = 1, . . . , M, (15)

with the mean

V1 =
1

M

M∑
i=1

V1i . (16)

The frame rate is 1 Hz. Figure 19 shows contour plots of the eigenfunctions Π1,v′
1
, . . . ,

Π7,v′
1

that correspond to eigenvalues λ1, . . . , λ7. The POD modes are ranked in de-

creasing order of their individual contribution to the kinetic energy, Ek = (v′
1/Ub)

2 =∑M

i=1 λi . The characteristic length scale in the spanwise direction, O(1.5Λ) can be
connected to the measurements in the (x, z)-plane for the dominant two POD
modes. Maxima/minima of Π1,v′

1
, Π2,v′

1
are obtained at a wall distance y1

.
= 0.3Λ,

corresponding to the location y = 0.26Λ, where measurements were taken in the
(x, z)-plane. Eigenfunctions of higher modes are characterized by smaller Λz, 0.2Λ–
0.3Λ for POD modes 6 and 7. For these two modes representing the vortical
structures we observed in figure 18, we note that the maxima/minima locations
of the eigenfunctions coincide with the Reynolds shear stress maximum. Figure 20
shows the fractional (broken line) and cumulative (solid line) contributions to the
turbulent kinetic energy amongst the dominant modes, 1, . . . , 30. The distribution is
plotted for the two turbulent Reynolds numbers, 3800 (open circles), and 7300 (solid
circles). Consistent with our findings in the (x, z)-plane, the relative contribution of
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Figure 21. Contours of the eigenfunctions Π1,v′
1
, . . . , Π7,v′

1
from the dominant modes λ1, . . . , λ7

for a decomposition of v′
1/Ub from 214 velocity fields of the non-developed flow (after the

4th crest) in the (y1, z)-plane. Continuous lines represent positive, broken lines negative values.
AOV= 0.82Λ × 0.82Λ, Reh = 3800.
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the two dominant modes increases with increasing Reynolds number. For Reh = 3800
and 7300, the cumulative contribution of these modes is 29% and 39%, whereas
modes 4–7 contribute 50% and 61% resectively. The triangles show the situation at
measurement location (4) in figure 2, where the the non-developed flow is studied at
Reh = 3800 in the (y1, z)-plane after the 4th crest. A comparison with the results for the
developed flow shows that a dominance of eigenvalues λ1, λ2 is not found. Figure 21
shows the eigenfunctions Π1,v′

1
, . . . , Π7,v′

1
for the non-developed case. Characteristic

scales that are obtained from the eigenfunctions of the first modes are smaller
than Λz = O(1.5Λ), which was observed for the developed flow. Extrema of the
eigenfunctions are located closer to the wavy surface. From these observations we
conclude that the non-developed flow does not contain the structures we observe for
the developed flow situation, but they develop and grow when passing the periodic
train of waves in the streamwise direction.

6. Summary
Based on spatially resolved measurements, we reported on the structure of the

developed flow between a wavy bottom and a flat top wall in a water channel
facility of aspect ratio 12 : 1. Conditions between laminar flow and turbulent flow at
Reynolds number of 7300 are considered. Three characteristic regions of the flow
that were previously identified were confirmed from PIV measurements in the (x, y)-
plane. To the authors’ knowledge, longitudinal structures with a charcteristic scale
Λz = O(1.5Λ) in the spanwise direction have been identified for the first time from
spatially resolving measurements in the (x, z)-plane at both laminar and turbulent
flow conditions (Reh = 3800, 7300). For laminar flow, the observed structures have
spatially fixed positions and Λz is obtained from instantaneous images. At turbulent
flow conditions, proper orthogonal decomposition is used to extract Λz from the
dominant modes. We find the two dominant modes to contribute almost 50% of
the energy contained in the streamwise velocity fluctuations. Considering the spanwise
domain sizes of the present DNS and LES studies, the large Λz is seen to have
considerable implications for computational studies, since it imposes requirements
on the spanwise domain size required to accurately resolve all scales of the flow.
The value obtained is consistent with the spanwise variation of the streamwise mean
velocity reported by Gong et al. (1996). In the (y1, z)-plane an experimental set-
up with a water prism enabled us, for the first time, to quantitatively connect the
O(1.5Λ)-structures to those in the vicinity of the wall surface. Based on instantaneous
realizations from numerical studies, first evidence of such structures has been supplied
by a number of investigators. However, to date, none of those works quantitatively
assessed their spanwise extent and energy content. A POD analysis of the v1-velocity
in the (y1, z)-plane reveals the eigenfunctions of the dominant POD modes 1 and 2
with a characteristic scale O(1.5Λ), that were already identified in the (x, y)-plane.
The eigenfunctions of modes 4, . . . , 7 characterize smaller structures that show local
maxima/minima in region (II), the maximum Reynolds stress location.
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Wänden. Nachr. Ges. Wiss. Göttingen, Math-Phys. Klasse, Neue Folge I, 2, 1–26.

Günther, A. 2001 Large-scale structures in Rayleigh–Bénard convection and flow over waves.
PhD thesis, ETH Zurich, Switzerland, Diss. ETH 14359. Electronic version: http://e-
collection.ethbib.ethz.ch/cgi.binshow.pl?type=diss&nr=14359

Günther, A. & Rudolf von Rohr, Ph. 2002 Structure of the temperature field for flow over
heated waves. Exps. Fluids 33, 920–930.

Henn, D. S. & Sykes, R. I. 1999 Large-eddy simulation of flow over wavy surfaces. J. Fluid Mech.
382, 75–112.

Herzog, S. 1986 The large scale structure in the near-wall region of turbulent pipe flow. PhD thesis,
Cornell University.

Hino, M. & Okumura, T. 1993 Coherent structure of turbulent flow over wavy walls. Ninth Symp.
on Turbulent Shear Flows, Kyoto, pp. 14.3.1–14.3.4.



284 A. Günther and Ph. Rudolf von Rohr

Hsu, S. T. & Kennedy, J. F. 1971 Turbulent flow in wavy pipes. J. Fluid Mech. 47, 481–502.

Hudson, J. D. 1993 The effect of a wavy boundary on a turbulent flow. PhD thesis, University of
Illinois, Urbana.

Hudson, J. D., Dykhno, L. & Hanratty, T. J. 1996 Turbulence production in flow over a wavy
wall. Exps. Fluids. 20, 257–265.

Kendall, J. M. 1970 The turbulent boundary layer over a wall with progressive surface waves.
J. Fluid Mech. 41, 259–281.

Krettenauer, K. & Schumann, U. 1992 Numerical simulation of turbulent convection over wavy
terrain. J. Fluid Mech. 237, 261–299.

Kuzan, J. D. 1986 Velocity measurements for turbulent separated and near separated flow over
solid waves. PhD thesis, University of Illinois, Urbana.

Kuzan, J. D. & Hanratty, T. J. 1989 Turbulent flow with incipient separation over solid waves.
Exps. Fluids 7, 88–98.

Lees, L., Kubota, T. & Sigal, A. 1972 Stability theory for cross-hatching. Part II. An experiment
on turbulent boundary layer over a wavy wall. Tech. Rep. SAMSO TR 72-34, vol. II, US Air
Force.

Lin, J. C., Walsh, M. J., Watson, R. D. & Balasubramanian, R. 1983 Turbulent drag characteristic
of small amplitude rigid surface waves. AIAA Paper 83-0228.

Liu, Z.-C., Adrian, R. J. & Hanratty, T. J. 2001 Large-scale modes of turbulent channel flow:
Transport and structure. J. Fluid Mech. 448, 53–80.

Lombardi, P., Angelis, V. D., Banerjee, S. 1996 Direct numerical simulation of near-interface
turbulence in coupled gas-liquid flow. Phys. Fluids 8, 1643.

Maass, C. & Schumann, U. 1996 Direct numerical simulation of separated turbulent flow over a
wavy boundary. In Flow Simulation with High Performance Computers (ed. E. H. Hirschel).
Notes on Numerical Fluid Mechanics, vol. 52, pp 227–241.

Markatos, N. C. G. 1978 Stochastic modeling of dynamic properties of non-linear water-waves.
Appl. Math. Modeling 2, 227–238.

Miles, J. W. 1957 On the generation of surface waves by shear flows J. Fluid Mech. 3, 185–204.

Miller, C. A. 1995 Turbulent boundary layer above complex terrain PhD thesis, University of
Western Ontario.
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